Quant Boosters  Shashank Prabhu, CAT 100 Percentiler  Set 3

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
Number of Questions  30
Topic  Quant Mixed Bag
Solved ? : Yes
Source : Learningroots forum

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
Q1) The cost price of four articles A, B, C and D are a, b, c and d respectively. A, B, C and D are sold at profits of 10%, 20%, 30% and 40% respectively. If the net profit on the sale of these four articles is 25%, a, b, c and d cannot be in the ratio
(a) 4 : 1 : 4 : 3
(b) 1 : 2 : 2 : 1
(c) 2 : 3 : 6 : 1
(d) 5 : 2 : 7 : 3

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
Substitute and check. First option, assume that the cost prices are 400, 100, 400, 300. So, profits will be 40, 20, 120, 120 and total profit will be 300 on total cost price of 1200. So, it is 25%. Similarly for option 2 and 3. The final option will give you profit of 420 on 1700 which is not 25%.

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
Q2) 2^x = 4^y = 8^z and xyz = 288, then value of 1/2x + 1/4y + 1/8z is
a) 11/12
b) 11/96
c) 29/96
d) 31/96
e) None of these

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
x=2y=3z
xyz=288
x^3=288×6
x^3=1728
x=12
y=6
z=4
1/24+1/24+1/32
11/96

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
Q3) Find the number of distinct integersided triangles with perimeter 1001.

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
Shortcut: when perimeter is even then go for n^2/48, when odd (n+3)^2/48
Original approach: Largest side is always less than the semi perimeter and greater than or equal to one third of the perimeter. Then take variables, and solve for positive solutions, remove duplicates n you are done.

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
Q4) Let x and y be two four digit palindromes (numbers that read the same forwards and backwards) and z be a five digit palindrome. If x + y = z, how many values of z are possible?
a. 2
b. 3
c. 4
d. 5

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
Let abba and pqqp be the two numbers.
The resultant five digit number has to start with 1 and so, will be of the form 1xyx1.
1001a+110b+1001p+110q=10001+1010x+100y
1001(a+p)+110(b+q)
But as the last digit is 1, a+p has to be 11
11011+110(b+q) will be a palindrome. So, b+q should not change the central values disproportionately. This is possible when b+q=0 or b+q=11. So, 11011 or 12221.

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
Q5) 9 contestants for miss India are seated around a round circular table. Aditya wants to date 3 of them such that he does not select any 2 neighbouring contestants. No. Of ways in which Aditya can do this is?

shashank_prabhu last edited by zabeer
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
Any three in 9c3 ways.
All three together in 9 ways.
Two together in 5 ways per couple (From abcdefghi if he chooses ab, he can choose one among only defgh, similarly for the 8 other pairs).
So, two together in 9 * 5 = 45 ways.
So, no two together in 9c3  9  45 = 30 ways.

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
Q6) There are one thousand students at the George Washington High School. Each student is assigned a locker, numbered 1 through 1000. On the first day of school each year, the students participate in an unusual ritual: All the lockers are closed in the beginning. The students then enter the school through one door, parade past the all the lockers, and then exit through another door. While in the school, the first student reverses the door position of each locker  if the door is open, he closes it, and if it is closed, he opens it. The second student reverses the door position of every other locker, starting with locker number 2. The third student reverses every third locker, starting with locker number 3, etc. After all 1000 students have completed this ritual, how many lockers will be left open?

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
All the lockers are opened and closed the same number of times as they have factors. As they are all closed at the start, an odd number of operations have to be performed on the ones that are open at the end. So, if N = a^x * b^y * c^z... the number of factors will be (x+1)(y+1)(z+1)... now if this has to be odd, all of x+1, y+1, z+1 will be odd. So, x, y, z will be even. So, N has to be a perfect square. As there are 31 perfect squares less than 1000 (1961), we understand that 31 lockers will be open after this exercise.

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
Q7) How many arrangements of of the letters of the word CATASTROPHE are there in which both the A's appear before both the T's?

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
1 letters with two letters repeating twice in 11!/2!2! ways
2 As and 2 Ts can be arranged in 4!/2!2!=6 ways. Only one among them AATT satisfies the condition. So, (1/6)*(11!/2!2!)=11!/4!
PS: When I say AATT... i mean all cases where 2 As will come before 2 Ts. So, the arrangement could be something like CSARAOHTPET as well. I am just talking about how As and Ts appear among themselves. As there is no binding condition, the distribution would be even.

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
Q8) A, B, C, D, E are five students who took CAT 2015. Following are the sums of their overall scores, taken three at a time: 119, 121, 124, 125, 123, 126, 127, 128, 129 and 132. What is the highest and lowest score among the scores of A, B, C, D, E?

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
Let a > b > c > d > e
a+b+c=132......(1)
c+d+e=119......(2)
a+b+d=129......(3)
b+d+e=121......(4)
We know the values of all possible triplets. So, 5c3=10 cases in total. So, each element occurs 6 times.
6a+6b+6c+6d+6e=1254
a+b+c+d+e=209.....(5)
From (1), (2) and (5)
c=42
From (2), (3) and (5)
d=39... putting these values in (2)
e=38
b=44
a=46

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
Q9) Find the number of zeroes at the end of 2180!

shashank_prabhu last edited by shashank_prabhu
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
[2180/5] + [2180/5^2] + [2180/5^3] + [2180/5^4]
= 436 + 87 + 17 + 3
= 543

shashank_prabhu last edited by
CAT 100%iler, 5 times AIR 1, Director  Learningroots, Ex ITC, Pagalguy, TAS
Q10) How many odd integers from 1000 to 8000 (inclusive) have distinct digits ?