Quant Boosters  Hemant Malhotra  Set 11

a * b * c = 7^2 * 11^2 * 13^2
x+y+z=2=4c2=6
x+y+z=2=4c2=6
x+y+z=2=4c2=6
so 6^3+3 * 6^3
4 * 6^3=864
now unordered
2 same
a^2 * b=1^2 * x
7^2 * x
11^2 * x
13^2 * x
(7 * 11)^2 * x
(7 * 13)^2 * x
(11 * 13)^2 * x
(7 * 11 * 13)^2
same 8 for negative so 16
so 86416 * 3/6 +16

Q27) In how many ways 1000 can b expressed as the product of 3 integers? (ordered and unordered)

1000=2^3 * 5^3
so x+y+z=3
so 5c2=10
and x+y+z=3
so 10
so 10 * 10=100
and negative 3 * 100=300
so total =400now unordered
same a^2 * b=2^3 * 5^3
1^2 * x
2^2 * x
5^2 * x
10^2 * x
(1)^2 * x
(2)^2 * x
(5)^2 * x
(10)^2 * x
so total y=8
but one case will be all same here so y=7
and z=1
so 6x + 3 * 7 + 1=400
so x=40022/6
so unordered=x+y+z

Q28) Find coefficient of x^3 * y^4 * z^3 in expansion of (2x + y + 4z)^10

general term of this equation is = 10!/(r1! * r2! * r3!) * (2x)^r1 * (y)^r2 * (4z)^r3
= 10!/(r1! * r2! * r3!) * (2)^r1 * (4)^r3 * x^r1 * y^r2 * z^r3
now we have to find x^3 * y^4 * z^3 so r1=3 ,r2=4 and r3=3
put tvalue of r1, r2, r3 here 10!/(r1! * r2! * r3!) * (2)^r1 * (4)^r3 * x^r1 * y^r2 * z^r3
so coefficient is 10!/(3! * 4! * 3!) * (2)^3 * (4)^3

Q29) Find the largest coefficient in (x + y + z + k)^15

general term = 15!/(r1! * r2! * r3! * r4!) * x^r1 * y^r2 * z^r3 * k^r4
so basically we have to maximize 15!/(r1! * r2! * r3! * r4!) term
so we have to minimize (r1! * r2! * r3! * r4!) so for this symmetry is useful so put values as close as possible here
r1 = r2 = r3 = 4 and r4 = 3
so largest coefficient is 15!/(3! * (4!)^3)

Q30) Find the coefficient of x^6 in (1 + x^2  x^3)^8

general term = 8!/r1! * r2! * r3! * (1)^r1 * (x^2)^r2 * (x^3)^r3
= 8!/r1! * r2! * r3! * x^(2r1) * (1)^r3 * (x)^3r3
= 8!/r1! * r2! * r3! * (1)^r3 * x^(2r2+3r3)
now we have to find coefficient of x^6 here (for any coefficient same procedure )
so r1 + r2 + r3 = 8
2r2 + 3r3 = 6
find r1, r2 and r3 here
let r3=0 so r2=3 so r1=2 and let r3=2,so r2=0 so r1=6 (r1,r2,r3 should be integer because term can't be negative)
now coefficient will be 8!/r1! * r2! * r3! *(1)^r3
put both values of r1,r2 and r3 and add
so 8!/5! * 3!+8!/2! * 6!=84

@hemant_malhotra as the no. of real roots is asked so it will always be 3